THE AMERICAN ASSOCIATION FOR LABORATORY ACCREDITATION # **ACCREDITED LABORATORY** A2LA has accredited # U.S. ARMY PRIMARY STANDARDS LABORATORY Redstone Arsenal, AL for technical competence in the field of ### Calibration The accreditation covers the specific calibrations listed on the agreed scope of accreditation. This laboratory meets the requirements of ISO/IEC 17025 - 1999 "General Requirements for the Competence of Testing and Calibration Laboratories" and any additional program requirements in the field of calibration. Laboratories that comply with this International Standard also operate in accordance with ISO 9001 or ISO 9002 (1994). Presented this 11th day of March 2003. SEAL PORTO OF PROCEED OF THE PROCESS President For the Accreditation Council Certificate Number 1256.01 Valid to December 31, 2004 For the calibrations to which this accreditation applies, please refer to the laboratory's Calibration Scope of Accreditation. ### SCOPE OF ACCREDITATION TO ISO/IEC 17025-1999 # U.S. ARMY PRIMARY STANDARDS LABORATORY AMSAM-TMD-S Redstone Arsenal, AL 35898-5000 John Ball Phone: 256 876 2666 #### **CALIBRATION** Valid To: December 31, 2004 Certificate Number: 1256.01 In recognition of the successful completion of the A2LA evaluation process, accreditation is granted to this laboratory to perform the following calibrations: ### I. Electrical – DC/Low Frequency | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |---------------|--|---|--| | DC Voltage | 1 V
10 V | 0.1 ppm
0.04 ppm | Josephson Array system | | | (0 to 220) mV
(220 to 2.2) V
(2.2 to 11) V
(11 to 22) V
(22 to 220) V
(220 to 1000) V | 7.5 ppm + 0.4 μV
5.0 ppm + 0.7 μV
3.5 ppm + 2.5 μV
3.5 ppm + 4.0 μV
5.0 ppm + 40 μV
6.5 ppm + 400 μV | Fluke 5720 and
HP 3458A (option 2) | | DC Resistance | $\begin{array}{c} (1 \text{ to } 10) \text{ m}\Omega \\ (10 \text{ to } 100) \text{ m}\Omega \\ (0.1 \text{ to } 1) \Omega \\ (1 \text{ to } 10) \Omega \\ (10 \text{ to } 100) \Omega \\ (0.1 \text{ to } 1) \text{ k}\Omega \\ (1 \text{ to } 10) \text{ k}\Omega \\ (10 \text{ to } 100) \text{ k}\Omega \\ (0.1 \text{ to } 1) \text{ M}\Omega \\ \end{array}$ | 4.3 ppm
3.6 ppm
0.85 ppm
0.37 ppm
0.65 ppm
0.71 ppm
1.0 ppm
2.8 ppm
3.8 ppm | Direct comparison with
current comparator
using an MI 6010B and
6000A | | | 10 MΩ
100 MΩ
1 GΩ
10 GΩ
100 GΩ
1 TΩ | 0.04 %
0.04 %
0.10 %
0.10 %
0.22 %
0.25 % | Penn Airborne resistors with Guildline 6500 | | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |--|--|--|--| | Inductance | 0.1 mH
1 mH
10 mH
100 mH
1 H
10 H | 0.11 %
0.031 %
0.028 %
0.022 %
0.011 %
0.20 % | Comparison with
reference standards
using General Radio
RLC Digibridge | | Capacitance | 10 pF
100 pF
1000 pF | 13 ppm
29 ppm
29 ppm | Comparison to reference standards using Andeen-Hagerling 2500A | | AC Ratio | 400 Hz and 1 kHz | 0.5 ppm | Ratio techniques | | Risetime | > 15 ps Tr | 9 ps | Comparison w/standard pulse generators using digital sampling system | | VOR Bearing Angle | 0° 30° to 330° | 0.01°
0.02° | Comparison with NIST
VOR standard using
NIST automated system | | Current Ratio and
Phase –
2:1, 4:1, 5:1, 10:1,
20:1 | 60 Hz | 0.0025 % (ratio)
0.9' (phase) | Current transformer
technique ESL-5:
current ratio technique
using Guildline 9900 | | AC/DC Difference Current Shunts 10 mA to 5 A 10 A | 10 KHz
10 KHz | 100 ppm
200 ppm | Current shunt technique
ESL-16: direct
comparison with NIST
calibrated current shunt
standards | | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |----------------------------------|---|---|--| | AC/DC Difference – Voltage 0.5 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz | 22 ppm
13 ppm
10 ppm
14 ppm
18 ppm
37 ppm
84 ppm | AC voltage
measurement technique
ESL-7: intercomparison
with NIST TVC using a
Fluke 5720, 5725 and
5215 | | 1 V | 500 kHz to 1 MHz
(10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz
500 kHz to 1 MHz | 130 ppm 16 ppm 11 ppm 11 ppm 24 ppm 20 ppm 16 ppm 97 ppm 110 ppm | | | 2 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz
500 kHz to 1 MHz | 11 ppm
11 ppm
8 ppm
11 ppm
9 ppm
11 ppm
72 ppm
73 ppm | | | 3 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz
500 kHz to 1 MHz | 12 ppm
11 ppm
8 ppm
6 ppm
9 ppm
14 ppm
75 ppm
99 ppm | | | 6 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz
500 kHz to 1 MHz | 12 ppm
14 ppm
12 ppm
11 ppm
11 ppm
15 ppm
72 ppm
300 ppm | | | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |------------------------------------|---|---|---| | AC/DC Difference – Voltage (cont) | | | AC voltage measurement technique ESL-7: intercomparison | | 10 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz
500 kHz to 1 MHz | 12 ppm
12 ppm
9 ppm
6 ppm
10 ppm
16 ppm
94 ppm
140 ppm | with NIST TVC using a
Fluke 5720, 5725 and
5215 | | 20 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
(100 to 500) kHz
500 kHz to 1 MHz | 22 ppm
19 ppm
14 ppm
11 ppm
9 ppm
18 ppm
150 ppm
240 ppm | | | 30 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz | 13 ppm
11 ppm
7 ppm
7 ppm
15 ppm
28 ppm | | | 60 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz | 16 ppm
14 ppm
12 ppm
19 ppm
17 ppm
28 ppm | | | 100 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz | 15 ppm
13 ppm
11 ppm
9 ppm
14 ppm
71 ppm | | | 200 V | (10 to 20) Hz
(20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz | 17 ppm
18 ppm
9 ppm
9 ppm
14 ppm
30 ppm | | | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |---|---|--|--| | AC/DC Difference – Voltage (cont) 300 V | (20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz | 21 ppm
23 ppm
12 ppm
16 ppm
30 ppm | AC voltage
measurement technique
ESL-7: intercomparison
with NIST TVC using a
Fluke 5720, 5725 and
5215 | | 600 V
950 V | (20 to 50) Hz
(50 to 400) Hz
400 Hz to 20 kHz
(20 to 50) kHz
(50 to 100) kHz
50 Hz
(50 to 400) Hz
400 Hz to 20 kHz | 23 ppm
22 ppm
14 ppm
19 ppm
28 ppm
31 ppm
38 ppm
61 ppm | | | AC/DC Difference – Voltage (0.45 to 30) V | 1 MHz
3 MHz
10 MHz
30 MHz
100 MHz | 230 ppm
240 ppm
520 ppm
0.14 %
1.4 % | AC voltage
measurement technique
ESL-29:
intercomparison with
NIST TVC using a
Fluke 5720 and 6060B | # II. Time and Frequency | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |---|----------------------------------|-----------------------------------|--| | Frequency | 0.1 MHz, 1 MHz,
5 MHz, 10 MHz | 1 part in 10 ¹² | Direct comparison
w/master oscillator using
NIST-developed
frequency measurement
technique | | Frequency Counters –
Band and Frequency
(as required) | To 110 GHz | 0.1 ppm | Comparison with master oscillators | # III. Electrical/EMC – High Frequency | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | |--|--|---| | RF Power | | | | Calibration Factor: | | | | Coaxial type N connector
Coaxial 3.5 mm connector
Coaxial 2.92 mm (K) connector | (0.1 to 10) mW; (0.0001 to 18) GHz
(0.1 to 10) mW; (0.01 to 26.5) GHz
(0.1 to 10) mW; (0.01 to 40.0) GHz | 0.7 % to 1.0 %
1.8 % to 1.9 %
2.2 % to 3.5 % | | X band (WR-90) waveguide
Ku band (WR-62) waveguide
K band (WR-42) waveguide
Ka band (WR-28) waveguide
Q band (WR-22) waveguide
V band (WR-15) waveguide
W band (WR-10) waveguide | (0.1 to 10) mW; (8.2 to 12.4) GHz
(0.1 to 10) mW; (12.4 to 18.0) GHz
(0.1 to 10) mW; (18.0 to 26.5) GHz
(0.1 to 10) mW; (26.5 to 40.0) GHz
(0.1 to 4) mW; (43.0 to 45.0) GHz
(0.1 to 1) mW; (58.0 to 62.0) GHz
(0.1 to 3) mW; (93.0 to 96.0) GHz | 1.5 %
1.5 %
1.6 %
1.4 %
2.4 %
1.6 %
2.4 % | | Technique: Power ratio comparison with standard thermistor mounts. | | | | Pulsed Power | | | | Coaxial type N connector | (0.1 to 10) mW peak power;
(0.01 to 18.0) GHz | (0.06 to 0.35) dB | | Technique: Power ratio comparison with standard thermistor mounts. | (0.01 to 10.0) G112 | | | RF Wattmeters | | | | Terminating – Coaxial with type N connectors Coaxial with 14 mm connectors | (1 to 180) W; (0.4 to 1000) MHz
(1 to 180) W; (0.4 to 1000) MHz | 2.0 %
2.0 % | | Thruline – Coaxial with type N connectors Coaxial with 14 mm connectors | (1 to 180) W; (0.4 to 1000) MHz
(1 to 180) W; (0.4 to 1000) MHz | 1.2 %
1.2 % | | Technique: Power ratio comparison w/standard thermistor mounts using an automated Brammal cascaded ratio technique | | | | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | |--|--|---| | Thermal Noise Coaxial type N connector Coaxial 3.5 mm connector Technique: Ratio comparison with standard noise sources | (5 to 40) dB ENR; (0.03 to 18) GHz
(5 to 40) dB ENR; (0.03 to 26.5)
GHz | (0.2 to 0.4) dB
(0.3 to 0.7) dB | | Power Ratio Coaxial type N, 7 mm, 14 mm connector Technique: Power ratio, Brammall cascaded power ratio | (0 to 50) dB; (0.0003 to 1.0) GHz | 1.0 % of ratio | | Reflection Measurements S ₁₁ Magnitude: Coaxial type N connector Coaxial 14 mm connector Coaxial 7 mm connector Coaxial 3.5 mm connector Coaxial 2.4 mm connector Coaxial 2.92 mm (K) connector X band WR-90 waveguide Ku band WR-62 waveguide K band WR-42 waveguide K band WR-42 waveguide Ka band WR-28 waveguide | 0.02 to 0.6; (0.01 to 18.0) GHz
0.02 to 0.6; (0.01 to 8.0) GHz
0.02 to 0.6; (0.01 to 18.0) GHz
0.02 to 0.6; (0.01 to 26.5) GHz
0.02 to 0.6; (0.01 to 40.0) GHz
0.02 to 0.6; (0.01 to 40.0) GHz
0.02 to 0.6; (8.2 to 12.4) GHz
0.02 to 0.6; (12.4 to 18.0) GHz
0.02 to 0.6; (18.0 to 26.5) GHz
0.02 to 0.6; (26.5 to 40.0) GHz | Techniques: Reflectometer, network analyzer, 6-port 0.005 to 0.015 0.005 to 0.015 0.005 to 0.020 0.010 to 0.030 0.010 to 0.030 0.010 to 0.030 0.006 0.006 0.006 0.01 0.01 | | S ₁₁ Phase: Coaxial type N connector Coaxial 7 mm connector Coaxial 3.5 mm connector Coaxial 2.4 mm connector Coaxial 2.92 mm (K) connector X band WR-90 waveguide Ku band WR-62 waveguide K band WR-42 waveguide K band WR-42 waveguide Ka band WR-28 waveguide | 0° to 360°; (0.01 to 18.0) GHz
0° to 360°; (0.01 to 18.0) GHz
0° to 360°; (0.01 to 26.5) GHz
0° to 360°; (0.01 to 40.0) GHz
0° to 360°; (0.01 to 40.0) GHz
0° to 360°; (8.2 to 12.4) GHz
0° to 360°; (12.4 to 18.0) GHz
0° to 360°; (18.0 to 26.5) GHz
0° to 360°; (26.5 to 40.0) GHz | Techniques: Network analyzer, 6-port 0.5° to 180° 0.6° to 180° | | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | |---|--|--| | Attenuation Measurements | | | | Incremental Attenuation | (0 to 120) dB; 30 MHz | 0.003 dB/10 dB | | | | Technique: NIST 30 MHz attenuation measurement system | | S ₂₁ Magnitude: | | Technique: Reflectometer, network analyzer, dual 6-port | | Coaxial type N connector
Coaxial 7 mm connector
Coaxial 3.5 mm connector
Coaxial 2.4 mm connector
Coaxial 2.92 mm (K) connector | (0 to 60) dB; (0.01 to 18.0) GHz
(0 to 60) dB; (0.01 to 18.0) GHz
(0 to 50) dB; (0.01 to 26.5) GHz
(0 to 50) dB; (0.01 to 50.0) GHz
(0 to 50) dB; (0.01 to 40.0) GHz | (0.07 to 0.6) dB
(0.06 to 0.5) dB
(0.15 to 1.0) dB
(0.15 to 1.0) dB
(0.06 to 1.0) dB | | X band WR-90 waveguide
Ku band WR-62 waveguide
K band WR-42 waveguide
Ka band WR-28 waveguide | (0 to 50) dB; (8.2 to 12.4) GHz
(0 to 50) dB; (12.4 to 18.0) GHz
(0 to 40) dB; (18.0 to 26.5) GHz
(0 to 40) dB; (26.5 to 40.0) GHz | (0.042 to 0.17) dB
(0.042 to 0.17) dB
(0.042 to 0.17) dB
(0.042 to 0.17) dB | | S ₂₁ Phase: | | | | Coaxial type N connector Coaxial 7 mm connector Coaxial 3.5 mm connector Coaxial 2.4 mm connector Coaxial 2.92 mm (K) connector | 0° to 360°; (0.01 to 18.0) GHz
0° to 360°; (0.01 to 18.0) GHz
0° to 360°; (0.01 to 26.5) GHz
0° to 360°; (0.01 to 40.0) GHz
0° to 360°; (0.01 to 40.0) GHz | 0.2° to 20°
0.2° to 20°
0.2° to 20°
0.2° to 20°
0.2° to 20° | | X band WR-90 waveguide
Ku band WR-62 waveguide
K band WR-42 waveguide
Ka band WR-28 waveguide | 0° to 360°; (8.2 to 12.4) GHz
0° to 360°; (12.4 to 18.0) GHz
0° to 360°; (18.0 to 26.5) GHz
0° to 360°; (26.5 to 40.0) GHz | 0.2° to 20°
0.2° to 20°
0.2° to 20°
0.2° to 20° | | Electromagnetic Field Strength | (20 to 62) V/m;
(0.0003 to 45.0) GHz | 2.0 dB | | Electromagnetic Power Density (Hazard Probes, Meters) | (0.1 to 1.0) mW/cm ² ;
(0.0003 to 45.0) GHz | 2.0 dB | | Technique: Anechoic chamber, TEM cell | | | ### IV. Dimensional | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |-----------------------|--|-----------------------------------|--| | Gage Blocks | (0.01 to 1) in (2 to 20) in | 4 μin
(3.3 + 1.5L) μin | Mechanical comparison | | Thread and Gear Wires | (4 to 80) pitch | 20 μin | Mechanical comparison | | Precision Balls | To 1 in | 20 μin | Mechanical comparison | | Angle Blocks | 1' to 45° | 1 arc second | Autocollimator/
comparison to master
angle block | | Flatness | Up to 3 in diameter (3 to 5) in diameter | 2 μin
3 μin | Interferometer/master optical flat | ### V. Mechanical | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |---------------------|---|---|---| | Mass | 1 mg 2 mg 3 mg 5 mg 10 mg 20 mg 30 mg 50 mg 100 mg 200 mg 300 mg 500 mg 1 g 2 g 3 g 5 g 10 g 20 g 30 g 50 g | 0.37 µg 0.30 µg 0.41 µg 0.51 µg 0.48 µg 0.42 µg 0.45 µg 1.0 µg 0.51 µg 0.71 µg 0.72 µg 1.3 µg 1.8 µg 3.2 µg 4.5 µg 7.4 µg 15 µg 15 µg 15 µg 24 µg | By comparison to precision single pan balance | | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |--|--|--|--| | Mass (cont) | 100 g 200 g 300 g 500 g 1000 g 2 kg 5 kg 10 kg 20 kg 0.001 lb 0.002 lb 0.003 lb 0.005 lb 0.01 lb 0.02 lb 0.03 lb 0.05 lb 0.1 lb 0.2 lb 0.3 lb 0.5 lb 1 lb 2 lb 5 lb 1 0 lb 2 lb 5 lb 10 lb 5 lb 10 lb 50 lb | 35 µg 53 µg 67 µg 78 µg 0.21 mg 0.52 mg 1.4 mg 2.7 mg 18 mg 0.98 µg 0.23 µg 0.56 µg 0.57 µg 12 µg 12 µg 15 µg 59 µg 26 µg 35 µg 56 µg 83 µg 82 µg 0.28 mg 0.61 mg 2.7 mg 1.3 mg 2.4 mg 25 mg 45 mg | By comparison to Class 1 Type 2 standard weights, using precision single pan balance | | Force – Load Cells,
Proving Rings, etc. | (10 to 1000) lb
(20 000 to 1 000 000) lb | 0.01 % | Deadweight force machine Morehouse force | | | | | machine | | Torque Cells | To 3000 lb·ft To 20 000 lb·ft | 0.1 % 0.3 % | Torque calibration
Lebow deadweight
floating system | | Accelerometry | 4 Hz to 2 kHz
(2 to 100) g's
(3 to 10) kHz
(2 to 100) g's | 1.5 %
2.5 % | Comparison calibration G is the standard acceleration due to gravity. $(g = 9.8 \text{ m/s}^2)$ | | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |--|---|---|---| | Rate Calibration | ± 500 °/sec | 1.6 % | Frequency counter and DMM | | Pressure – Mercurial
Manometer, Piston
Gages, Piston Gages
(medium) | To 100 inHg (0.5 to 1000) psi (600 to 12 000) psi | 0.0003 in Hg +
0.0021 % of reading
0.008 %
0.010 % | Schwein mercurial manometer Deadweight piston gage | | Vacuum | (20 to 5x10 ⁻³) torr | 0.7 % of reading | MKS | ### VI. Acoustical Quantities | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |---------------------|---|-----------------------------------|--| | Microphone Sensors | 20 Hz to 1 kHz
(2 to 7) kHz
(8 to 12.5) kHz | 0.1 dB
0.15 dB
0.3 dB | Type L pressure reciprocity | | | 250 Hz
2 Hz to 200 kHz
100 Hz to 20 kHz | 1 dB
0.08 dB
0.8 dB | Voltage insertion
Electrostatic actuator
Plane wave tube | | Sound Calibrators | 125 Hz to 4 kHz | 0.3 dB | Comparison to APSL calibrated standard sound calibrator | | | 20 Hz to 25 kHz | 0.9 dB | Voltage insertion | | Artificial Mastoids | 1 kHz | 4.5 % | Impedance head used as transfer standard | ### VII. Fluid Quantities | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |---|--|-----------------------------------|--| | Gas Mask Tester
Calibration | 1000 to 10 000 particles per cc | 20 % fit factor | Aerosol measurement and comparison to CNC | | Calibration of Air and
Gas Flow Meters | (1 to 30) cfm
10 ccpm to 50 ltr/min | 1 %
0.75 % of reading | Bell Prover (air) MoBloc calibration system | # VIII. Optical Quantities | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |--|--|-----------------------------------|--| | Fiber Optics Power – 10 nW to 100 μW | 850 nm
1310 nm
1550 nm | 3.0 %
3.0 %
3.0 % | Detector based | | Fiber Optics
Wavelength | (600 to 1700) nm | 0.5 nm | Spectrum analyzer and intrinsic source | | Spectral radiance – (300 to 1600) nm | (1x10 ⁻⁹ to 1x10 ⁻⁵)
Wcm ⁻² sr ⁻¹ nm ⁻¹ | 5 % | Detector and source based | | Spectral Transmission – (300 to 1500) nm | 0 % to 100 % | 3 % | Spectrophotometer | | Photometric – Illuminance Luminance Color Temperature | (10 to 500) fcd
(10 to 10 000) fL
2000 K to 3200 K | 2 %
2 %
17 K | Detector and source based | | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |-------------------------------------|---|-----------------------------------|--| | Laser Energy (1064 nm) | 200 nJ to 20 mJ | 7 % | Detector based and using beamsplitters | | Laser Power 488 nm 514.5 nm 1064 nm | 100 mW to 1 W
100 mW to 1 W
100 mW to 8 W | 5 %
5 %
5 % | Detector based and using beamsplitters | | UV Irradiance (365 nm) | (600 to 2000) W/cm ² | 10 % | Detector based | # IX. Thermodynamics | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |--|---|--|---| | Humidity | 10 % to 90 % | 0.5 % | Two-pressure chamber | | Standard Platinum Resistance Thermometers – Fixed Point Calibrations: Triple Point of Water Triple Point of Ar: Triple Point of Hg: Melting Point of Ga Freeze Point of Sn Freeze Point of Zn | -189 °C to 962 °C 0.01 °C -189.3442 °C 38.8344 °C 29.7646 °C 231.928 °C 419.527 °C | 0.0010 °C
0.0025 °C
0.0017 °C
0.0018 °C
0.0026 °C
0.0038 °C | Triple points and freezing points using ac bridge | | Non-fixed Point
Calibration of
Temperature Devices
Using SPRT | -60 °C to 350 °C | 0.008 °C | Direct comparison in baths | | Parameter/Equipment | Range | Best Uncertainty ¹ (±) | Comments | |---|---|---|-------------------| | Thermocouples – Type S Type K Type J Type T Other Types | 0 °C to 1000 °C
0 °C to 1000 °C
0 °C to 750 °C
0 °C to 350 °C
0 °C to 1000 °C | 0.75 °C
3 °C
3 °C
1.5 °C
5 °C | Direct comparison | | Blackbody Radiation
Temperature | 10 °C to 1000 °C | 2.2 °C | Direct comparison | # X. Ionizing Radiation and Radioactivity | Parameter | Range | Best Uncertainty ¹ (±) | Comments | |--|--|-----------------------------------|---------------------------| | Alpha Sources | Small area (²³⁹ Pu)
To 1x10 ⁷ CPM
Large area (²³⁸ Pu, ²³⁹ Pu)
To 1x10 ⁶ BQ | 4.0 %
5.0 % | Source and detector based | | Gamma Sources ² (137 Cs, 60 Co) | 0.05 mR/hr to 5000 R/hr | 3.5 % | Detector based | | X-Ray Source
(20 to 250 keV) | (0.5 to 500) R/hr | 3.5 % | Detector based | | Gamma Detectors
(20 to 250 keV) | 0.05 mR/hr to 800 R/hr | 10 % | Source based | | X-Ray Detectors | (0.5 to 500) R/hr | 10 % | Source based | Best Uncertainties represent expanded uncertainties using a coverage factor of k=2 which provides a level of confidence of approximately 95 %. ² On-Site calibration service is available for this calibration. The uncertainties achievable on a customer's site can be expected to be larger than the Best Measurement Capabilities (BMC) that the accredited laboratory has been assigned as Best Uncertainty on the A2LA Scope. Allowance must be made for aspects such as the environment at the place of calibration and for other possible adverse effects such as those caused by transportation of the calibration equipment. The usual allowance for the uncertainty introduced by the item being calibrated, (e.g. resolution) must also be considered and this, on its own, could result in the calibration uncertainty being larger than the BMC.